Somatic mutation in autosomal dominant polycystic kidney disease revealed by deep sequencing human kidney cysts

Amali C. Mallawaarachchi, Yvonne Hort, Laura Wedd, Kitty Lo, Sarah Senum, Mojgan Toumari, Wenhan Chen, Mike Utsiwegota, Jane Mawson, Scott Leslie, Jerome Laurence, Lyndal Anderson, Paul Snelling, Robert Salomon, Gopala K. Rangan, Timothy Furlong, John Shine, Mark J. Cowley

Research output: Contribution to journalArticlepeer-review

Abstract

Autosomal Dominant Polycystic Kidney Disease (ADPKD) results in progressive cysts that lead to kidney failure, and is caused by heterozygous germline variants in PKD1 or PKD2. Cyst pathogenesis is not definitively understood. Somatic second-hit mutations have been implicated in cyst pathogenesis, though technical sequencing challenges have limited investigation. We used unique molecular identifiers, high-depth massively parallel sequencing and custom analysis techniques to identify somatic second-hit mutations in 24 whole cysts from disparate regions of six human ADPKD kidneys, utilising replicate samples and orthogonal confirmation. Average depth of coverage of 1166 error-corrected reads for PKD1 and 539 reads for PKD2 was obtained. 58% (14/24) of cysts had a detectable PKD1 somatic variant, with 5/6 participants having at least one cyst with a somatic variant. We demonstrate that low-frequency somatic mutations are detectable in a proportion of cysts from end-stage ADPKD human kidneys. Further studies are required to understand the drivers of this somatic mutation.
Original languageEnglish
Article number69
Journalnpj Genomic Medicine
Volume9
Issue number1
DOIs
Publication statusPublished - Dec 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Fingerprint

Dive into the research topics of 'Somatic mutation in autosomal dominant polycystic kidney disease revealed by deep sequencing human kidney cysts'. Together they form a unique fingerprint.

Cite this