Statistical prediction of probable seismic hazard zonation of Iran using self-organized artificial intelligence model

A. Sivandi-Pour, E. Noroozinejad Farsangi

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

The Iranian plateau has been known as one of the most seismically active regions of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. Earthquakes are regularly felt on all sides of the region. Prediction of the occurrence location of the future earthquakes along with determining the probability percentage can be very useful in decreasing the seismic risks. Determining predicted locations causes increasing attention to design, seismic rehabilitation and evaluating the reliability of the present structures in these locations. No exact method has been approved for predicting future earthquake parameters yet. In recent years, more attention is paid to the earthquake magnitude prediction, but no study has been done in the field of probable earthquake occurrence hazard zonation. In this study, locations of future earthquakes in Iran were predicted by self-organized artificial neural networks (ANN). Then probable seismic risk zoning map was drawn by the statistical analyses, and the results indicated that the maps can properly predict future seismic events.
Original languageEnglish
Pages (from-to)467-473
Number of pages7
JournalInternational Journal of Engineering, Transactions A: Basics
Volume32
Issue number4
DOIs
Publication statusPublished - 2019

Fingerprint

Dive into the research topics of 'Statistical prediction of probable seismic hazard zonation of Iran using self-organized artificial intelligence model'. Together they form a unique fingerprint.

Cite this