Structural brain network topology underpinning ADHD and response to methylphenidate treatment

K. R. Griffiths, T. A. Braund, Michael R. Kohn, S. Clarke, L. M. Williams, M. S. Korgaonkar

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Behavioural disturbances in attention deficit hyperactivity disorder (ADHD) are thought to be due to dysfunction of spatially distributed, interconnected neural systems. While there is a fast-growing literature on functional dysconnectivity in ADHD, far less is known about the structural architecture underpinning these disturbances and how it may contribute to ADHD symptomology and treatment prognosis. We applied graph theoretical analyses on diffusion MRI tractography data to produce quantitative measures of global network organisation and local efficiency of network nodes. Support vector machines (SVMs) were used for comparison of multivariate graph measures of 37 children and adolescents with ADHD relative to 26 age and gender matched typically developing children (TDC). We also explored associations between graph measures and functionally-relevant outcomes such as symptom severity and prediction of methylphenidate (MPH) treatment response. We found that multivariate patterns of reduced local efficiency, predominantly in subcortical regions (SC), were able to distinguish between ADHD and TDC groups with 76% accuracy. For treatment prognosis, higher global efficiency, higher local efficiency of the right supramarginal gyrus and multivariate patterns of increased local efficiency across multiple networks at baseline also predicted greater symptom reduction after 6 weeks of MPH treatment. Our findings demonstrate that graph measures of structural topology provide valuable diagnostic and prognostic markers of ADHD, which may aid in mechanistic understanding of this complex disorder.
Original languageEnglish
Article number150
Number of pages9
JournalTranslational Psychiatry
Volume11
Issue number1
DOIs
Publication statusPublished - 2021

Open Access - Access Right Statement

© The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article�s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article�s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Fingerprint

Dive into the research topics of 'Structural brain network topology underpinning ADHD and response to methylphenidate treatment'. Together they form a unique fingerprint.

Cite this