Suppressed N fixation and diazotrophs after four decades of fertilization

Kunkun Fan, Manuel Delgado-Baquerizo, Xisheng Guo, Daozhong Wang, Yanying Wu, Mo Zhu, Wei Yu, Huaiying Yao, Yong-guan Zhu, Haiyan Chu

Research output: Contribution to journalArticlepeer-review

304 Citations (Scopus)

Abstract

Background: N fixation is one of the most important microbially driven ecosystem processes on Earth, allowing N to enter the soil from the atmosphere, and regulating plant productivity. A question that remains to be answered is whether such a fundamental process would still be that important in an over-fertilized world, as the long-term effects of fertilization on N fixation and associated diazotrophic communities remain to be tested. Here, we used a 35-year fertilization experiment, and investigated the changes in N fixation rates and the diazotrophic community in response to long-term inorganic and organic fertilization. Results: It was found that N fixation was drastically reduced (dropped by 50%) after almost four decades of fertilization. Our results further indicated that functionality losses were associated with reductions in the relative abundance of keystone and phylogenetically clustered N fixers such as Geobacter spp. Conclusions: Our work suggests that long-term fertilization might have selected against N fixation and specific groups of N fixers. Our study provides solid evidence that N fixation and certain groups of diazotrophic taxa will be largely suppressed in a more and more fertilized world, with implications for soil biodiversity and ecosystem functions.
Original languageEnglish
Article number143
Number of pages10
JournalMicrobiome
Volume7
Issue number1
DOIs
Publication statusPublished - 2019

Open Access - Access Right Statement

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Fingerprint

Dive into the research topics of 'Suppressed N fixation and diazotrophs after four decades of fertilization'. Together they form a unique fingerprint.

Cite this