Abstract
The synthesis of morphology-controlled carbon-coated nanostructured LiFePO4 (LFP/Carbon) cathode materials by surfactant-assisted hydrothermal method using block copolymers is reported. The resulting nanocrystalline high surface area materials were coated with carbon and designated as LFP/C123 and LFP/C311. All the materials were systematically characterized by various analytical, spectroscopic and imaging techniques. The reverse structure of the surfactant Pluronic® 31R1 (PPO-PEO-PPO) in comparison to Pluronic® P123 (PEO-PPO-PEO) played a vital role in controlling the particle size and morphology which in turn ameliorate the electrochemical performance in terms of reversible specific capacity (163 mAhg 1 and 140 mAhg 1 at 0.1 C for LFP/C311 and LFP/ C123, respectively). In addition, LFP/C311 demonstrated excellent electrochemical performance including lower charge transfer resistance (146.3 Ω) and excellent cycling stability (95% capacity retention at 1 C after 100 cycles) and high rate capability (163.2 mAhg 1 at 0.1 C; 147.1 mAhg 1 at 1 C). The better performance of the former is attributed to LFP nanoparticles (< 50 nm) with a specific spindle-shaped morphology. Further, we have also evaluated the electrode performance with the use of both PVDF and CMC binders employed for the electrode fabrication.
Original language | English |
---|---|
Pages (from-to) | 23-31 |
Number of pages | 9 |
Journal | ChemistryOpen |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2020 |
Open Access - Access Right Statement
©2019 The Authors. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Keywords
- carbon composites
- cathodes
- lithium ion batteries
- nanostructured materials