TY - JOUR
T1 - Surviving in semi-arid environments : functional coordination and trade-offs in shrubs from Argentina
AU - Delbón, Natalia
AU - Castello, Lucía V.
AU - Rios-Villamil, Alejandro
AU - Cosa, María T.
AU - Stiefkens, Laura
PY - 2021
Y1 - 2021
N2 - Human action has led to an increase in aridification, making water a progressively scarcer resource. In angiosperms, different species resolve this challenge in diverse ways, mainly through modifications of the xylem network, which is responsible for water efficiency and safety. Xerophytes generally show similar characteristics, but exceptions are rather frequent. One possible explanation for this lack of similarity among cohabiting species is that trade-offs and/or functional coordination between their organs occur and shape alternative survival strategies. Studying species that inhabit a common area can help to identify key traits that determine those diverse strategies and to predict which species might tolerate further environmental change. We here examined the morpho-anatomical wood and bark traits of a group of species that live in a seasonally dry environment in Argentina. In a previous study, we described the leaf traits of these species and we thus aim to complement our findings and outline their strategies to manage water deficits. Our results show that there are different degrees of xeromorphism within this group. Clear xeromorphic traits, such as high vessel frequency and small diameter, were found in most species. However, some presented traits that were appropriate for mesic environments. An overview of leaf and wood traits indicates that the absence of a typical xeric characteristic in the wood might be compensated by the presence of a xeric leaf trait, and vice versa. Collectively, these trait combinations allow these species to survive in dry conditions and could influence their tolerance to increasing aridity.
AB - Human action has led to an increase in aridification, making water a progressively scarcer resource. In angiosperms, different species resolve this challenge in diverse ways, mainly through modifications of the xylem network, which is responsible for water efficiency and safety. Xerophytes generally show similar characteristics, but exceptions are rather frequent. One possible explanation for this lack of similarity among cohabiting species is that trade-offs and/or functional coordination between their organs occur and shape alternative survival strategies. Studying species that inhabit a common area can help to identify key traits that determine those diverse strategies and to predict which species might tolerate further environmental change. We here examined the morpho-anatomical wood and bark traits of a group of species that live in a seasonally dry environment in Argentina. In a previous study, we described the leaf traits of these species and we thus aim to complement our findings and outline their strategies to manage water deficits. Our results show that there are different degrees of xeromorphism within this group. Clear xeromorphic traits, such as high vessel frequency and small diameter, were found in most species. However, some presented traits that were appropriate for mesic environments. An overview of leaf and wood traits indicates that the absence of a typical xeric characteristic in the wood might be compensated by the presence of a xeric leaf trait, and vice versa. Collectively, these trait combinations allow these species to survive in dry conditions and could influence their tolerance to increasing aridity.
UR - https://hdl.handle.net/1959.7/uws:60313
U2 - 10.1163/22941932-bja10026
DO - 10.1163/22941932-bja10026
M3 - Article
SN - 0928-1541
VL - 42
SP - 172
EP - 190
JO - IAWA Journal
JF - IAWA Journal
IS - 2
ER -