Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control

Zhong-Hua Chen, Adrian Hills, Ulrike Bätz, Anna Amtmann, Virgilio L. Lew, Michael R. Blatt

    Research output: Contribution to journalArticlepeer-review

    146 Citations (Scopus)

    Abstract

    The dynamics of stomatal movements and their consequences for photosynthesis and transpirational water loss have long been incorporated into mathematical models, but none have been developed from the bottom up that are widely applicable in predicting stomatal behavior at a cellular level. We previously established a systems dynamic model incorporating explicitly the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. Here we describe the behavior of the model in response to experimentally documented changes in primary pump activities and malate (Mal) synthesis imposed over a diurnal cycle. We show that the model successfully recapitulates the cyclic variations in H+, K+, Cl-, and Mal concentrations in the cytosol and vacuole known for guard cells. It also yields a number of unexpected and counterintuitive outputs. Among these, we report a diurnal elevation in cytosolic-free Ca2+ concentration and an exchange of vacuolar Cl- with Mal, both of which find substantiation in the literature but had previously been suggested to require additional and complex levels of regulation. These findings highlight the true predictive power of the OnGuard model in providing a framework for systems analysis of stomatal guard cells, and they demonstrate the utility of the OnGuard software and HoTSig library in exploring fundamental problems in cellular physiology and homeostasis.
    Original languageEnglish
    Pages (from-to)1235-1251
    Number of pages17
    JournalPlant physiology
    Volume159
    Issue number3
    DOIs
    Publication statusPublished - 2012

    Keywords

    • epidermis
    • leaves
    • photosynthesis
    • plant cells and tissues
    • plants, motion of fluids in
    • stoma

    Fingerprint

    Dive into the research topics of 'Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control'. Together they form a unique fingerprint.

    Cite this