TY - JOUR
T1 - Tangerine tomato roots show increased accumulation of acyclic carotenoids, less abscisic acid, drought sensitivity, and impaired endomycorrhizal colonization
AU - Nayak, Jwalit J.
AU - Anwar, Sidra
AU - Krishna, Priti
AU - Chen, Zhong-Hua
AU - Plett, Jonathan M.
AU - Foo, Eloise
AU - Cazzonelli, Christopher I.
PY - 2022
Y1 - 2022
N2 - that has a higher bioavailability and recognised health benefits in treating anti-inflammatory diseases compared to all-trans-lycopene isomers found in red tomatoes. We investigated if photoisomerization of tetra-cis-lycopene occurs in roots of the MicroTom tangerine (tangmic) tomato and how this affects root to shoot biomass, mycorrhizal colonization, abscisic acid accumulation, and responses to drought. tangmic plants grown in soil under glasshouse conditions displayed a reduction in height, number of flowers, fruit yield, and root length compared to wild-type (WT). Soil inoculation with Rhizophagus irregularis revealed fewer arbuscules and other fungal structures in the endodermal cells of roots in tangmic relative to WT. The roots of tangmic hyperaccumulated acyclic cis-carotenes, while only trace levels of xanthophylls and abscisic acid were detected. In response to a water deficit, leaves from the tangmic plants displayed a rapid decline in maximum quantum yield of photosystem II compared to WT, indicating a defective root to shoot signalling response to drought. The lack of xanthophylls biosynthesis in tangmic roots reduced abscisic acid levels, thereby likely impairing endomycorrhizal colonisation and drought-induced root to shoot signalling.
AB - that has a higher bioavailability and recognised health benefits in treating anti-inflammatory diseases compared to all-trans-lycopene isomers found in red tomatoes. We investigated if photoisomerization of tetra-cis-lycopene occurs in roots of the MicroTom tangerine (tangmic) tomato and how this affects root to shoot biomass, mycorrhizal colonization, abscisic acid accumulation, and responses to drought. tangmic plants grown in soil under glasshouse conditions displayed a reduction in height, number of flowers, fruit yield, and root length compared to wild-type (WT). Soil inoculation with Rhizophagus irregularis revealed fewer arbuscules and other fungal structures in the endodermal cells of roots in tangmic relative to WT. The roots of tangmic hyperaccumulated acyclic cis-carotenes, while only trace levels of xanthophylls and abscisic acid were detected. In response to a water deficit, leaves from the tangmic plants displayed a rapid decline in maximum quantum yield of photosystem II compared to WT, indicating a defective root to shoot signalling response to drought. The lack of xanthophylls biosynthesis in tangmic roots reduced abscisic acid levels, thereby likely impairing endomycorrhizal colonisation and drought-induced root to shoot signalling.
UR - https://hdl.handle.net/1959.7/uws:66149
U2 - 10.1016/j.plantsci.2022.111308
DO - 10.1016/j.plantsci.2022.111308
M3 - Article
SN - 0168-9452
VL - 321
JO - Plant Science
JF - Plant Science
M1 - 111308
ER -