TY - JOUR
T1 - Temperature-dependent cutting physics in orthogonal cutting of carbon fibre reinforced thermoplastic (CFRTP) composite
AU - Ge, J.
AU - Tan, W.
AU - Ahmad, S.
AU - Falzon, Brian G.
AU - Catalanotti, G.
AU - Higgins, C.
AU - Jin, Y.
AU - Sun, D.
PY - 2024/1
Y1 - 2024/1
N2 - The global commitment towards reducing carbon emissions drives the implementation of sustainable carbon-fibre-reinforced-thermoplastic composites (CFRTPs). However, the machining of CFRTPs presents challenges due to the material's ductile–brittle composition and sensitivity to machining-induced high temperatures. For the first time, we conducted temperature-controlled orthogonal cutting of CFRTP (using CF/PEKK as a demonstrator) to unveil its temperature-dependent cutting physics. Three representative cutting temperatures, 23 ℃ (ambient temperature),100 ℃ (g)) and 200 ℃ (>Tg) and four typical fibre cutting orientations (0°, 45°, 90°, and 135°) have been investigated. The evolution of chip microstructural morphology and surface/subsurface damage have been analysed by advanced microscopy to reveal temperature-dependent material removal mechanisms. The experimental results were elucidated through a novel microscale finite-element-analysis (FEA) model considering thermal softening of the matrix and interface. Results show the transition of the cutting physics with increasing temperature is associated to the degradation of the thermoplastic matrix stiffness/ultimate strength and interface bonding strength and fracture toughness, especially when > Tg.
AB - The global commitment towards reducing carbon emissions drives the implementation of sustainable carbon-fibre-reinforced-thermoplastic composites (CFRTPs). However, the machining of CFRTPs presents challenges due to the material's ductile–brittle composition and sensitivity to machining-induced high temperatures. For the first time, we conducted temperature-controlled orthogonal cutting of CFRTP (using CF/PEKK as a demonstrator) to unveil its temperature-dependent cutting physics. Three representative cutting temperatures, 23 ℃ (ambient temperature),100 ℃ (g)) and 200 ℃ (>Tg) and four typical fibre cutting orientations (0°, 45°, 90°, and 135°) have been investigated. The evolution of chip microstructural morphology and surface/subsurface damage have been analysed by advanced microscopy to reveal temperature-dependent material removal mechanisms. The experimental results were elucidated through a novel microscale finite-element-analysis (FEA) model considering thermal softening of the matrix and interface. Results show the transition of the cutting physics with increasing temperature is associated to the degradation of the thermoplastic matrix stiffness/ultimate strength and interface bonding strength and fracture toughness, especially when > Tg.
UR - https://hdl.handle.net/1959.7/uws:75551
U2 - 10.1016/j.compositesa.2023.107820
DO - 10.1016/j.compositesa.2023.107820
M3 - Article
SN - 1359-835X
VL - 176
JO - Composites Part A: Applied Science and Manufacturing
JF - Composites Part A: Applied Science and Manufacturing
M1 - 107820
ER -