TY - JOUR
T1 - Temperature field evolution and thermal-mechanical interaction induced damage in drilling of thermoplastic CF/PEKK : a comparative study with thermoset CF/epoxy
AU - Ge, Jia
AU - Luo, Ming
AU - Zhang, Dinghua
AU - Catalanotti, Giuseppe
AU - Falzon, Brian G.
AU - McClelland, John
AU - Higgins, Colm
AU - Jin, Yan
AU - Sun, Dan
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/2/24
Y1 - 2023/2/24
N2 - Although new generation carbon fibre reinforced thermoplastic (CFRTP) such as carbon fibre reinforced polyetherketoneketone (CF/PEKK) is a promising sustainable alternative to the conventional thermoset carbon fibre reinforced plastic (CFRP), there is a lack of literature regarding its machining performance. This is the first study unveiling the machining temperature evolution during drilling of CF/PEKK and its potential impact on the associated material damages. Through a comparative study with the thermoset CF/epoxy, the disparate drilling performance of the two composites has been uncovered, and the results were found to be closely related to the materials' thermal/mechanical properties. Specifically, CF/PEKK produces continuous chips due to its excellent ductility and thermal sensitivity, whereas CF/epoxy produces segmented chips due to its brittle nature. CF/PEKK generates up to 40 N (50.5 %) higher thrust force, 87.6 °C (98.9 %) higher hole wall temperature and 61.1 °C (48.8 %) higher chip temperature than that of CF/epoxy. This has been correlated to the longer tool-chip contact length of CF/PEKK and its unique chip morphology. Despite the greater thrust force/temperature generation, CF/PEKK shows 55.7 % lower delamination damage as compared to CF/epoxy, and this is owning to its excellent interlaminar toughness. This study establishes a more in-depth understanding into the drilling performance of thermoplastic CF/PEKK and thermoset CF/epoxy and also provides guidance on the high performance manufacturing of next generation composites.
AB - Although new generation carbon fibre reinforced thermoplastic (CFRTP) such as carbon fibre reinforced polyetherketoneketone (CF/PEKK) is a promising sustainable alternative to the conventional thermoset carbon fibre reinforced plastic (CFRP), there is a lack of literature regarding its machining performance. This is the first study unveiling the machining temperature evolution during drilling of CF/PEKK and its potential impact on the associated material damages. Through a comparative study with the thermoset CF/epoxy, the disparate drilling performance of the two composites has been uncovered, and the results were found to be closely related to the materials' thermal/mechanical properties. Specifically, CF/PEKK produces continuous chips due to its excellent ductility and thermal sensitivity, whereas CF/epoxy produces segmented chips due to its brittle nature. CF/PEKK generates up to 40 N (50.5 %) higher thrust force, 87.6 °C (98.9 %) higher hole wall temperature and 61.1 °C (48.8 %) higher chip temperature than that of CF/epoxy. This has been correlated to the longer tool-chip contact length of CF/PEKK and its unique chip morphology. Despite the greater thrust force/temperature generation, CF/PEKK shows 55.7 % lower delamination damage as compared to CF/epoxy, and this is owning to its excellent interlaminar toughness. This study establishes a more in-depth understanding into the drilling performance of thermoplastic CF/PEKK and thermoset CF/epoxy and also provides guidance on the high performance manufacturing of next generation composites.
UR - https://hdl.handle.net/1959.7/uws:75600
M3 - Article
SN - 1526-6125
VL - 88
SP - 167
EP - 183
JO - Journal of Manufacturing Processes
JF - Journal of Manufacturing Processes
ER -