Abstract
Binocular vision requires an exquisite matching of projections from each eye to form a cohesive representation of the visual world. Eye-specific inputs are anatomically segregated, but in register in the visual thalamus, and overlap within the binocular region of primary visual cortex. Here, we show that the transmembrane protein Ten_m3 regulates the alignment of ipsilateral and contralateral projections. It is expressed in a gradient in the developing visual pathway, which is consistently highest in regions that represent dorsal visual field. Mice that lack Ten_m3 show profound abnormalities in mapping of ipsilateral, but not contralateral, projections, and exhibit pronounced deficits when performing visually mediated behavioural tasks. It is likely that the functional deficits arise from the interocular mismatch, because they are reversed by acute monocular inactivation. We conclude that Ten_m3 plays a key regulatory role in the development of aligned binocular maps, which are required for normal vision.
Original language | English |
---|---|
Article number | e241 |
Pages (from-to) | 2077-2092 |
Number of pages | 16 |
Journal | PLoS Biology |
Volume | 5 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2007 |
Open Access - Access Right Statement
© 2007 Leamey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Keywords
- binocular vision
- brain mapping
- membrane proteins
- tenascin
- visual cortex