TY - JOUR
T1 - The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner
AU - Richards, Jodi D.
AU - Cubeddu, Liza
AU - Roberts, Jennifer
AU - Liu, Huanting
AU - White, Malcolm F.
PY - 2008
Y1 - 2008
N2 - XPB is a superfamily 2 helicase with a 3"²-5"² polarity. In eukaryotes, XPB is an integral subunit of the transcription factor TFIIH, which plays a dual role in DNA opening at RNA polymerase II promoters and in establishing the repair bubble around a DNA lesion in nucleotide excision repair. Eukaryotic XPB has only very limited helicase activity in vitro and may function as a DNA-dependent molecular switch to catalyse local distortion of DNA in transcription and repair. Most archaea have one or two homologues of the XPB protein with a presumed role in DNA repair, but only one other subunit of the TFIIH complex, the 5"²-3"² helicase XPD, has been identified in archaea. Here we report the biochemical characterisation of the two homologous XPB proteins from the crenarchaeon Sulfolobus solfataricus. Although both proteins are single-stranded-DNA-stimulated ATPases, neither displays any helicase activity in vitro, consistent with recent studies of eukaryotic XPB. In almost all archaeal genomes, the xpb gene lies adjacent to a conserved partner gene, and we demonstrate that these two gene products form a physical interaction in vitro. We propose the name Bax1 (Binds archaeal XPB) for this protein, which has a predicted endonuclease domain. XPB and Bax1 may collaborate in processing nucleic acid in an archaeal-specific DNA repair pathway.
AB - XPB is a superfamily 2 helicase with a 3"²-5"² polarity. In eukaryotes, XPB is an integral subunit of the transcription factor TFIIH, which plays a dual role in DNA opening at RNA polymerase II promoters and in establishing the repair bubble around a DNA lesion in nucleotide excision repair. Eukaryotic XPB has only very limited helicase activity in vitro and may function as a DNA-dependent molecular switch to catalyse local distortion of DNA in transcription and repair. Most archaea have one or two homologues of the XPB protein with a presumed role in DNA repair, but only one other subunit of the TFIIH complex, the 5"²-3"² helicase XPD, has been identified in archaea. Here we report the biochemical characterisation of the two homologous XPB proteins from the crenarchaeon Sulfolobus solfataricus. Although both proteins are single-stranded-DNA-stimulated ATPases, neither displays any helicase activity in vitro, consistent with recent studies of eukaryotic XPB. In almost all archaeal genomes, the xpb gene lies adjacent to a conserved partner gene, and we demonstrate that these two gene products form a physical interaction in vitro. We propose the name Bax1 (Binds archaeal XPB) for this protein, which has a predicted endonuclease domain. XPB and Bax1 may collaborate in processing nucleic acid in an archaeal-specific DNA repair pathway.
UR - http://handle.uws.edu.au:8081/1959.7/555509
U2 - 10.1016/j.jmb.2007.12.019
DO - 10.1016/j.jmb.2007.12.019
M3 - Article
SN - 0022-2836
VL - 376
SP - 634
EP - 644
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
IS - 3
ER -