Abstract
Here, we describe the Compact Array Broad-band Backend (CABB) and present first results obtained with the upgraded Australia Telescope Compact Array (ATCA). The 16-fold increase in observing bandwidth, from 2 × 128 to 2 × 2048 MHz, high-bit sampling and the addition of 16 zoom windows (each divided into further 2048 channels) provide major improvements for all ATCA observations. The benefits of the new system are: (1) hugely increased radio continuum and polarization sensitivity as well as image fidelity; (2) substantially improved capability to search for and map emission and absorption lines over large velocity ranges; (3) simultaneous multi-line and continuum observations; (4) increased sensitivity, survey speed and dynamic range due to high-bit sampling and (5) high-velocity resolution, while maintaining full polarization output. The new CABB system encourages all observers to make use of both spectral line and continuum data to achieve their full potential. Given the dramatic increase of the ATCA capabilities in all bands (ranging from 1.1 to 105 GHz) CABB enables scientific projects that were not feasible before the upgrade, such as simultaneous observations of multiple spectral lines, on-the-fly mapping, fast follow-up of radio transients (e.g. the radio afterglow of new supernovae) and maser observation at high-velocity resolution and full polarization. The first science results presented here include wide-band spectra, high dynamic-range images and polarization measurements, highlighting the increased capability and discovery potential of the ATCA.
Original language | English |
---|---|
Pages (from-to) | 832-856 |
Number of pages | 25 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 416 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2011 |