TY - JOUR
T1 - The carbon cost of the 2019–20 Australian fires varies with fire severity and forest type
AU - Milner, Kirsty H.
AU - Collins, Luke
AU - Gibson, Rebecca K.
AU - Samson, Stephanie A.
AU - Rolls, Katherine T.
AU - Milner, Kirsty
AU - Medlyn, Belinda E.
AU - Price, Owen F.
AU - Griebel, Anne
AU - Choat, Brendan
AU - Jiang, Mingkai
AU - Boer, Matthias M.
PY - 2022
Y1 - 2022
N2 - Aim: To estimate loss of above-ground carbon (AGC) and conversion of live carbon to dead carbon following understorey and canopy fire. Location: South-eastern Australia. Time period: 2019–2020. Major taxa studied: Four widespread resprouting eucalypt forests. Methods: Above-ground carbon was measured in 15 plots in each of four forest types one-year post-fire. We also assessed topkill, that is, trees subject to canopy loss that failed to resprout epicormically. Results: While canopy fire was associated with greater declines in AGC than understorey fire, this was only statistically significant for only one forest type, where AGC declined from 154 to 85 Mg C ha−1 following canopy fire. Significant post-fire increases in dead AGC were observed in one forest type, where dead carbon increased from 22 to 60% after canopy fire. Topkill of trees following canopy fire (48–78% of stems) was higher than topkill after understorey fire (36–53% of stems) and in unburnt forest (12–55%). Topkill occurred primarily in small-diameter stems. Consequently, there was no effect of fire on the proportion of dead AGC in trees, with the exception of the forest with lowest productivity (i.e., lowest biomass) and lowest annual rainfall, where dead tree carbon increased from 8% in unburnt forest to 13 and 53% after understorey and canopy fire, respectively. AGC in understorey vegetation and coarse woody debris was similar or lower in burnt compared with unburnt forest. Litter carbon was significantly lower and pyrogenic carbon significantly higher in burnt forest, with no difference between understorey and canopy fire. Main conclusions: While increased fire severity was associated with increased changes to carbon stocks, there were differences among forest types. Specifically, the driest forest type had the highest rates of topkill following canopy fire. These results highlight the importance of spatial variability in fire severity and forest type in determining the effects of fire on carbon stocks.
AB - Aim: To estimate loss of above-ground carbon (AGC) and conversion of live carbon to dead carbon following understorey and canopy fire. Location: South-eastern Australia. Time period: 2019–2020. Major taxa studied: Four widespread resprouting eucalypt forests. Methods: Above-ground carbon was measured in 15 plots in each of four forest types one-year post-fire. We also assessed topkill, that is, trees subject to canopy loss that failed to resprout epicormically. Results: While canopy fire was associated with greater declines in AGC than understorey fire, this was only statistically significant for only one forest type, where AGC declined from 154 to 85 Mg C ha−1 following canopy fire. Significant post-fire increases in dead AGC were observed in one forest type, where dead carbon increased from 22 to 60% after canopy fire. Topkill of trees following canopy fire (48–78% of stems) was higher than topkill after understorey fire (36–53% of stems) and in unburnt forest (12–55%). Topkill occurred primarily in small-diameter stems. Consequently, there was no effect of fire on the proportion of dead AGC in trees, with the exception of the forest with lowest productivity (i.e., lowest biomass) and lowest annual rainfall, where dead tree carbon increased from 8% in unburnt forest to 13 and 53% after understorey and canopy fire, respectively. AGC in understorey vegetation and coarse woody debris was similar or lower in burnt compared with unburnt forest. Litter carbon was significantly lower and pyrogenic carbon significantly higher in burnt forest, with no difference between understorey and canopy fire. Main conclusions: While increased fire severity was associated with increased changes to carbon stocks, there were differences among forest types. Specifically, the driest forest type had the highest rates of topkill following canopy fire. These results highlight the importance of spatial variability in fire severity and forest type in determining the effects of fire on carbon stocks.
UR - https://hdl.handle.net/1959.7/uws:69840
U2 - 10.1111/geb.13548
DO - 10.1111/geb.13548
M3 - Article
SN - 1466-822X
VL - 31
SP - 2131
EP - 2146
JO - Global Ecology and Biogeography
JF - Global Ecology and Biogeography
IS - 10
ER -