TY - JOUR
T1 - The critical role of glutathione in maintenance of the mitochondrial genome
AU - Ayer, Anita
AU - Tan, Shi-Xiong
AU - Grant, Chris M.
AU - Meyer, Andreas J.
AU - Dawes, Ian W.
AU - Perrone, Gabriel G.
PY - 2010
Y1 - 2010
N2 - Glutathione (GSH) is a key redox buffer and protectant. Growth (approx. one or two divisions) of cells lacking γ-glutamylcysteine synthetase (gsh1) in the absence of GSH led to irreversible respiratory incompetency in all cells, and after five divisions 75% of cells completely lacked mitochondrial DNA (mtDNA). The level of GSH required to allow continuous growth was distinct from that required to prevent loss of mtDNA. GSH limitation led to a change in the transcript levels of 190 genes, including 30 genes regulated by the Aft1p and/or Aft2p transcription factors, which regulate the cellular response to changes in iron availability. Disruption of AFT1 but not AFT2 in gsh1 cells afforded a protective effect on maintenance of respiratory competency, as did overexpression of GRX3 or GRX4 (encoding monothiol glutaredoxins that act as negative regulators of Aft1p). Importantly, an iron-independent mechanism (~ 30%) was also observed to mediate GSH-dependent mtDNA loss. Analysis of the redox environment in the cytosol, mitochondrial matrix, and intermembrane space (IMS) found that the cytosol was most severely and rapidly affected by GSH depletion. GSH may also modulate the redox environment of the IMS. The implications of altered GSH homeostasis for maintenance of mtDNA, compartmental redox, and the pathophysiology of certain diseases are discussed.
AB - Glutathione (GSH) is a key redox buffer and protectant. Growth (approx. one or two divisions) of cells lacking γ-glutamylcysteine synthetase (gsh1) in the absence of GSH led to irreversible respiratory incompetency in all cells, and after five divisions 75% of cells completely lacked mitochondrial DNA (mtDNA). The level of GSH required to allow continuous growth was distinct from that required to prevent loss of mtDNA. GSH limitation led to a change in the transcript levels of 190 genes, including 30 genes regulated by the Aft1p and/or Aft2p transcription factors, which regulate the cellular response to changes in iron availability. Disruption of AFT1 but not AFT2 in gsh1 cells afforded a protective effect on maintenance of respiratory competency, as did overexpression of GRX3 or GRX4 (encoding monothiol glutaredoxins that act as negative regulators of Aft1p). Importantly, an iron-independent mechanism (~ 30%) was also observed to mediate GSH-dependent mtDNA loss. Analysis of the redox environment in the cytosol, mitochondrial matrix, and intermembrane space (IMS) found that the cytosol was most severely and rapidly affected by GSH depletion. GSH may also modulate the redox environment of the IMS. The implications of altered GSH homeostasis for maintenance of mtDNA, compartmental redox, and the pathophysiology of certain diseases are discussed.
KW - glutathione
KW - saccharomyces cerevisiae
UR - http://handle.uws.edu.au:8081/1959.7/551041
U2 - 10.1016/j.freeradbiomed.2010.09.023
DO - 10.1016/j.freeradbiomed.2010.09.023
M3 - Article
SN - 0891-5849
VL - 49
SP - 1956
EP - 1968
JO - Free Radicals in Biology and Medicine
JF - Free Radicals in Biology and Medicine
IS - 12
ER -