Abstract
The physical arrangement of pitches in most traditional musical instruments "” including the piano and guitar "” is non-isomorphic, which means that a given spatial relationship between two keys, buttons, or fretted strings can produce differing musical pitch intervals. Recently, a number of new musical interfaces have been developed with isomorphic pitch layouts where these relationships are consistent. Since the nineteenth century, it has been widely considered that isomorphic pitch layouts facilitate the learnability and playability of instruments, particularly when a piece is transposed into a different key; however, prior to this paper, this has not been experimentally tested. To address this, we investigated four different pitch layouts to examine whether isomorphism facilitates retention and transfer of musical learning within and across keys. Both non-musicians and musicians were tested on two training tasks: two immediate retention tasks and a transfer task. Each participant played every task on two distinct layouts"”one being an isomorphic layout (Wicki or Bosanquet), the other being a minimally adjusted non-isomorphic version. For musicians, isomorphism was found to facilitate transfer of learning to a novel task; for non-musicians, the results were mixed. This study provides insight into features that are important to music instrument design.
Original language | English |
---|---|
Article number | 2514 |
Number of pages | 33 |
Journal | Applied Sciences |
Volume | 8 |
Issue number | 12 |
Publication status | Published - 6 Dec 2018 |
Bibliographical note
Publisher Copyright:© 2018 by the authors.
Open Access - Access Right Statement
©2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Keywords
- learnability
- musical instruments
- musical pitch