The global biogeography of tree leaf form and habit

Haozhi Ma, Thomas W. Crowther, Lidong Mo, Daniel S. Maynard, Susanne S. Renner, Johan van den Hoogen, Yibiao Zou, Jingjing Liang, Sergio de-Miguel, Gert Jan Nabuurs, Peter B. Reich, Ülo Niinemets, Meinrad Abegg, Yves C. Adou Yao, Giorgio Alberti, Angelica M. Almeyda Zambrano, Braulio Vilchez Alvarado, Esteban Alvarez-Dávila, Patricia Alvarez-Loayza, Luciana F. AlvesChristian Ammer, Clara Antón-Fernández, Alejandro Araujo-Murakami, Luzmila Arroyo, Valerio Avitabile, Gerardo A. Aymard, Timothy R. Baker, Radomir Bałazy, Olaf Banki, Jorcely G. Barroso, Meredith L. Bastian, Jean Francois Bastin, Luca Birigazzi, Philippe Birnbaum, Robert Bitariho, Pascal Boeckx, Frans Bongers, Olivier Bouriaud, Pedro H.S. Brancalion, Susanne Brandl, Francis Q. Brearley, Roel Brienen, Eben N. Broadbent, Helge Bruelheide, Filippo Bussotti, Roberto Cazzolla Gatti, Ricardo G. César, Goran Cesljar, Sebastian Pfautsch, Zhi Xin Zhu

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)
2 Downloads (Pure)

Abstract

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
Original languageEnglish
Pages (from-to)1795-1809
Number of pages15
JournalNature Plants
Volume9
Issue number11
DOIs
Publication statusPublished - Nov 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

Fingerprint

Dive into the research topics of 'The global biogeography of tree leaf form and habit'. Together they form a unique fingerprint.

Cite this