TY - JOUR
T1 - The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities
AU - Chistiakov, Dimitry A.
AU - Orekhov, Alexander N.
AU - Bobryshev, Yuri V.
PY - 2017
Y1 - 2017
N2 - Diabetic heart pathology has a serious social impact due to high prevalence worldwide and significant mortality/invalidation of diabetic patients suffered from cardiomyopathy. The pathogenesis of diabetic and diabetes-related cardiomyopathy is associated with progressive loss and impairment of cardiac function due to adverse effects of metabolic, prooxidant, proinflammatory, and pro-apoptotic stress factors. In the adult heart, the transcriptional factor forkhead box-1 (FOXO-1) is involved in maintaining cardiomyocytes in the homeostatic state and induction of their adaptation to metabolic and pro-oxidant stress stimuli. Insulin inhibits cardiac FOXO-1 expression/activity through the IRS1/Akt signaling in order to prevent gluconeogenesis. In diabetes and insulin resistance, both insulin production and insulin-dependent signaling is weakened or absent. Indeed, FOXO-1 becomes overproduced/overactivated in response to stress stimuli. In diabetic cardiac tissue, FOXO-1 overactivity induces the metabolic switch from the glucose uptake to the predominant lipid uptake. FOXO-1 limits mitochondrial glucose oxidation by stimulation of pyruvate dehydrogenase kinase 4 (PDK4) and increases the lipid uptake through up-regulation of surface expression of CD36. In cardiac muscle cells, lipid accumulation leads to lipotoxicity via increased lipid oxidation, oxidative stress, and cardiomyocyte apoptosis. Indeed, cardiac FOXO-1 levels and activity should be strictly regulated. FOXO-1 deregulation (that is observed in the diabetic heart) causes detrimental effects that finally lead to heart failure.
AB - Diabetic heart pathology has a serious social impact due to high prevalence worldwide and significant mortality/invalidation of diabetic patients suffered from cardiomyopathy. The pathogenesis of diabetic and diabetes-related cardiomyopathy is associated with progressive loss and impairment of cardiac function due to adverse effects of metabolic, prooxidant, proinflammatory, and pro-apoptotic stress factors. In the adult heart, the transcriptional factor forkhead box-1 (FOXO-1) is involved in maintaining cardiomyocytes in the homeostatic state and induction of their adaptation to metabolic and pro-oxidant stress stimuli. Insulin inhibits cardiac FOXO-1 expression/activity through the IRS1/Akt signaling in order to prevent gluconeogenesis. In diabetes and insulin resistance, both insulin production and insulin-dependent signaling is weakened or absent. Indeed, FOXO-1 becomes overproduced/overactivated in response to stress stimuli. In diabetic cardiac tissue, FOXO-1 overactivity induces the metabolic switch from the glucose uptake to the predominant lipid uptake. FOXO-1 limits mitochondrial glucose oxidation by stimulation of pyruvate dehydrogenase kinase 4 (PDK4) and increases the lipid uptake through up-regulation of surface expression of CD36. In cardiac muscle cells, lipid accumulation leads to lipotoxicity via increased lipid oxidation, oxidative stress, and cardiomyocyte apoptosis. Indeed, cardiac FOXO-1 levels and activity should be strictly regulated. FOXO-1 deregulation (that is observed in the diabetic heart) causes detrimental effects that finally lead to heart failure.
KW - apoptosis
KW - diabetic cardiomyopathies
KW - forkhead transcription factors
KW - heart failure
KW - insulin resistance
KW - oxidative stress
UR - http://handle.westernsydney.edu.au:8081/1959.7/uws:43539
U2 - 10.1016/j.ijcard.2017.07.096
DO - 10.1016/j.ijcard.2017.07.096
M3 - Article
SN - 0167-5273
VL - 245
SP - 236
EP - 244
JO - International Journal of Cardiology
JF - International Journal of Cardiology
ER -