The interplay of recent vegetation and sea ice dynamics : results from a regional Earth system model over the Arctic

W. Zhang, R. Döscher, T. Koenigk, P. A. Miller, C. Jansson, P. Samuelsson, M. Wu, B. Smith

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Recent accelerated warming over the Arctic coincides with sea ice reduction and shifting patterns of land cover. We use a state‐of‐the‐art regional Earth system model, RCAO‐GUESS, which comprises a dynamic vegetation model (LPJ‐GUESS), a regional atmosphere model (RCA), and an ocean sea ice model (RCO), to explore the dynamic coupling between vegetation and sea ice during 1989–2011. Our results show that RCAO‐GUESS captures recent trends in observed sea ice concentration and extent, with the inclusion of vegetation dynamics resulting in larger, more realistic variations in summer and autumn than the model that does not account for vegetation dynamics. Vegetation feedbacks induce concomitant changes in downwelling longwave radiation, near‐surface temperature, mean sea level pressure, and sea ice reductions, suggesting a feedback chain linking vegetation change to sea ice dynamics. This study highlights the importance of including interactive vegetation dynamics in modeling the Arctic climate system, particularly when predicting sea ice dynamics.
Original languageEnglish
Article numbere2019GL085982
Number of pages10
JournalGeophysical Research Letters
Volume47
Issue number6
DOIs
Publication statusPublished - 2020

Keywords

  • Arctic regions
  • global warming
  • plants
  • sea ice

Fingerprint

Dive into the research topics of 'The interplay of recent vegetation and sea ice dynamics : results from a regional Earth system model over the Arctic'. Together they form a unique fingerprint.

Cite this