The mechanisms of collinear integration

John Cass, David Alais

Research output: Contribution to journalArticle

36 Citations (SciVal)

Abstract

Low-contrast visual contour fragments are easier to detect when presented in the context of nearby collinear contour elements (U. Polat & D. Sagi, 1993). The spatial and temporal determinants of this collinear facilitation have been studied extensively (J. R. Cass & B. Spehar, 2005; Y. Tanaka & D. Sagi, 1998; C. B. Williams & R. F. Hess, 1998), although considerable debate surrounds the neural mechanisms underlying it. Our study examines this question using a novel stimulus, whereby the flanking ‘‘contour’’ elements are rotated around their own axis. By measuring contrast detection thresholds to a brief foveal target presented at various phases of flanker rotation, we find peak facilitation after flankers have rotated beyond their collinear phase. This optimal facilitative delay increases monotonically as a function of target– flanker separation, yielding estimates of cortical propagation of 0.1 m/s, a value highly consistent with the dynamics of long-range horizontal interactions observed within primary visual cortex (V1). A curious new finding is also observed: Facilitative peaks also occur when the target flash precedes flanker collinearity by 20–80 ms, a range consistent with contrast-dependent cortical onset latencies. Together, these data suggest that collinear facilitation involves two separate mechanisms, each possessing distinct dynamics: (i) slowly propagating horizontal interactions within V1 and (ii) a faster integrative mechanism, possibly driven by synchronous collinear cortical onset.
Original languageEnglish
Pages (from-to)915-922
Number of pages8
JournalJournal of Vision
Volume6
Issue number9
DOIs
Publication statusPublished - 2010

Keywords

  • vision
  • visual perception

Fingerprint

Dive into the research topics of 'The mechanisms of collinear integration'. Together they form a unique fingerprint.

Cite this