TY - JOUR
T1 - The potential of surface nano-engineering in characteristics of cobalt-based nanoparticles and biointerface interaction with prokaryotic and human cells
AU - Mohammadi, Fatemeh
AU - Gholami, Ahmad
AU - Omidifar, Navid
AU - Amini, Abbas
AU - Kianpour, Sedigheh
AU - Taghizadeh, Seyedeh-Masoumeh
PY - 2022
Y1 - 2022
N2 - Cobalt-based nanoparticles (CBNPs) have recently received great attention in biomedical studies; however, the possible biotoxicity of these nanoparticles (NPs) has remained a foremost concern that should be addressed. As surface functionalization is one of the helpful proposed solutions, we aimed to apply Lipoamino acids (LAAs) as a coating agent to improve biocompatibility. To this purpose, cobalt oxide, cobalt ferrite, and iron oxide nanoparticles (IONs) were synthesized with and without 2-amino-hexadecanoic acid coating to assess the impacts of LAA coating on characteristics and biocompatibility of CBNPs in human cells and compare with IONs, a widely used magnetic NPs in biomedicine. Antibacterial activities of NPs were evaluated against four Gram-negative and Gram-positive bacteria species to assess their biointerface interaction with prokaryotic cells. In addition, the antibacterial activities of synthesized NPs were compared to silver NPs, one of the widely used antimicrobial NPs and standard antibiotics (ampicillin). The structural characteristics properties of NPs were analyzed using TEM, FE-SEM, EDS, FTIR, XRD, and VSM. These NPs exhibited sphere-like to polygon-like morphology with desirable mean size. CBNPs displayed dose-dependent cytotoxicity and antimicrobial activities against human cell lines and all tested microbial species, as well as more cytotoxicity and bacterial inhibition compared to IONs. Besides, the results revealed that LAA coating could significantly improve the biocompatibility and antibacterial activity of NPs while impacting magnetic properties. To sum up, it seems that surface functionalization could provide more potent tools for bioapplications with improving biocompatibility and bacterial inhibition of CBNPs, though; further studies are needed in this regard.
AB - Cobalt-based nanoparticles (CBNPs) have recently received great attention in biomedical studies; however, the possible biotoxicity of these nanoparticles (NPs) has remained a foremost concern that should be addressed. As surface functionalization is one of the helpful proposed solutions, we aimed to apply Lipoamino acids (LAAs) as a coating agent to improve biocompatibility. To this purpose, cobalt oxide, cobalt ferrite, and iron oxide nanoparticles (IONs) were synthesized with and without 2-amino-hexadecanoic acid coating to assess the impacts of LAA coating on characteristics and biocompatibility of CBNPs in human cells and compare with IONs, a widely used magnetic NPs in biomedicine. Antibacterial activities of NPs were evaluated against four Gram-negative and Gram-positive bacteria species to assess their biointerface interaction with prokaryotic cells. In addition, the antibacterial activities of synthesized NPs were compared to silver NPs, one of the widely used antimicrobial NPs and standard antibiotics (ampicillin). The structural characteristics properties of NPs were analyzed using TEM, FE-SEM, EDS, FTIR, XRD, and VSM. These NPs exhibited sphere-like to polygon-like morphology with desirable mean size. CBNPs displayed dose-dependent cytotoxicity and antimicrobial activities against human cell lines and all tested microbial species, as well as more cytotoxicity and bacterial inhibition compared to IONs. Besides, the results revealed that LAA coating could significantly improve the biocompatibility and antibacterial activity of NPs while impacting magnetic properties. To sum up, it seems that surface functionalization could provide more potent tools for bioapplications with improving biocompatibility and bacterial inhibition of CBNPs, though; further studies are needed in this regard.
UR - https://hdl.handle.net/1959.7/uws:69382
U2 - 10.1016/j.colsurfb.2022.112485
DO - 10.1016/j.colsurfb.2022.112485
M3 - Article
SN - 0927-7765
VL - 215
JO - Colloids and Surfaces B: Biointerfaces
JF - Colloids and Surfaces B: Biointerfaces
M1 - 112485
ER -