TY - JOUR
T1 - The rotation of α Oph investigated using polarimetry
AU - Bailey, Jeremy
AU - Cotton, Daniel V.
AU - Howarth, Ian D.
AU - Lewis, Fiona
AU - Kedziora-Chudczer, Lucyna
PY - 2020
Y1 - 2020
N2 - Recently we have demonstrated that high-precision polarization observations can detect the polarization resulting from the rotational distortion of a rapidly rotating B-type star. Here, we investigate the extension of this approach to an A-type star. Linear-polarization observations of α Oph (A5IV) have been obtained over wavelengths from 400 to 750 nm. They show the wavelength dependence expected for a rapidly rotating star combined with a contribution from interstellar polarization. We model the observations by fitting rotating-star polarization models and adding additional constraints including a measured vesin i. However, we cannot fully separate the effects of rotation rate and inclination, leaving a range of possible solutions. We determine a rotation rate (ω = Ω/Ωc) between 0.83 and 0.98 and an axial inclination i > 60◦. The rotation-axis position angle is found to be 142 ± 4◦, differing by 16◦ from a value obtained by interferometry. This might be due to precession of the rotation axis due to interaction with the binary companion. Other parameters resulting from the analysis include a polar temperature Tp = 8725 ± 175 K, polar gravity log gp = 3.93 ± 0.08 (dex cgs), and polar radius Rp = 2.52 ± 0.06 R. Comparison with rotating-star evolutionary models indicates that α Oph is in the later half of its main-sequence evolution and must have had an initial ω of 0.8 or greater. The interstellar polarization has a maximum value at a wavelength (λmax) of 440 ± 110 nm, consistent with values found for other nearby stars.
AB - Recently we have demonstrated that high-precision polarization observations can detect the polarization resulting from the rotational distortion of a rapidly rotating B-type star. Here, we investigate the extension of this approach to an A-type star. Linear-polarization observations of α Oph (A5IV) have been obtained over wavelengths from 400 to 750 nm. They show the wavelength dependence expected for a rapidly rotating star combined with a contribution from interstellar polarization. We model the observations by fitting rotating-star polarization models and adding additional constraints including a measured vesin i. However, we cannot fully separate the effects of rotation rate and inclination, leaving a range of possible solutions. We determine a rotation rate (ω = Ω/Ωc) between 0.83 and 0.98 and an axial inclination i > 60◦. The rotation-axis position angle is found to be 142 ± 4◦, differing by 16◦ from a value obtained by interferometry. This might be due to precession of the rotation axis due to interaction with the binary companion. Other parameters resulting from the analysis include a polar temperature Tp = 8725 ± 175 K, polar gravity log gp = 3.93 ± 0.08 (dex cgs), and polar radius Rp = 2.52 ± 0.06 R. Comparison with rotating-star evolutionary models indicates that α Oph is in the later half of its main-sequence evolution and must have had an initial ω of 0.8 or greater. The interstellar polarization has a maximum value at a wavelength (λmax) of 440 ± 110 nm, consistent with values found for other nearby stars.
KW - polarimetry
KW - polarization (light)
KW - stars
UR - https://hdl.handle.net/1959.7/uws:57118
U2 - 10.1093/mnras/staa785
DO - 10.1093/mnras/staa785
M3 - Article
SN - 0035-8711
VL - 494
SP - 2254
EP - 2267
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 2
ER -