The use and predictive performance of the Peninsula Health Falls Risk Assessment Tool (PH-FRAT) in 25 residential aged care facilities : a retrospective cohort study using routinely collected data

Nasir Wabe, Joyce Siette, Karla L. Seaman, Amy D. Nguyen, Magdalena Z. Raban, Jacqueline C. T. Close, Stephen R. Lord, Johanna I. Westbrook

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Background: The Peninsula Health Falls Risk Assessment Tool (PH-FRAT) is a validated and widely applied tool in residential aged care facilities (RACFs) in Australia. However, research regarding its use and predictive performance is limited. This study aimed to determine the use and performance of PH-FRAT in predicting falls in RACF residents. Methods: A retrospective cohort study using routinely-collected data from 25 RACFs in metropolitan Sydney, Australia from Jul 2014-Dec 2019. A total of 5888 residents aged ≥65 years who were assessed at least once using the PH-FRAT were included in the study. The PH-FRAT risk score ranges from 5 to 20 with a score > 14 indicating fallers and ≤ 14 non-fallers. The predictive performance of PH-FRAT was determined using metrics including area under receiver operating characteristics curve (AUROC), sensitivity, specificity, sensitivityEvent Rate(ER) and specificityER. Results: A total of 27,696 falls were reported over 3,689,561 resident days (a crude incident rate of 7.5 falls /1000 resident days). A total of 38,931 PH-FRAT assessments were conducted with a median of 4 assessments per resident, a median of 43.8 days between assessments, and an overall median fall risk score of 14. Residents with multiple assessments had increased risk scores over time. The baseline PH-FRAT demonstrated a low AUROC of 0.57, sensitivity of 26.0% (sensitivityER 33.6%) and specificity of 88.8% (specificityER 82.0%). The follow-up PH-FRAT assessments increased sensitivityER values although the specificityER decreased. The performance of PH-FRAT improved using a lower risk score cut-off of 10 with AUROC of 0.61, sensitivity of 67.5% (sensitivityER 74.4%) and specificity of 55.2% (specificityER 45.6%). Conclusions: Although PH-FRAT is frequently used in RACFs, it demonstrated poor predictive performance raising concerns about its value. Introducing a lower PH-FRAT cut-off score of 10 marginally enhanced its predictive performance. Future research should focus on understanding the feasibility and accuracy of dynamic fall risk predictive tools, which may serve to better identify residents at risk of falls.
Original languageEnglish
Article number271
Number of pages11
JournalBMC Geriatrics
Volume22
Issue number1
DOIs
Publication statusPublished - 2022

Open Access - Access Right Statement

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Fingerprint

Dive into the research topics of 'The use and predictive performance of the Peninsula Health Falls Risk Assessment Tool (PH-FRAT) in 25 residential aged care facilities : a retrospective cohort study using routinely collected data'. Together they form a unique fingerprint.

Cite this