The use of predictive fall models for older adults receiving aged care, using routinely collected electronic health record data : a systematic review

Karla Seaman, Kristiana Ludlow, Nasir Wabe, Laura Dodds, Joyce Siette, Amy Nguyen, Mikaela Jorgensen, Stephen R. Lord, Jacqueline C. T. Close, Libby O’Toole, Caroline Lin, Annaliese Eymael, Johanna Westbrook

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Falls in older adults remain a pressing health concern. With advancements in data analytics and increasing uptake of electronic health records, developing comprehensive predictive models for fall risk is now possible. We aimed to systematically identify studies involving the development and implementation of predictive falls models which used routinely collected electronic health record data in home-based, community and residential aged care settings. Methods: A systematic search of entries in Cochrane Library, CINAHL, MEDLINE, Scopus, and Web of Science was conducted in July 2020 using search terms relevant to aged care, prediction, and falls. Selection criteria included English-language studies, published in peer-reviewed journals, had an outcome of falls, and involved fall risk modelling using routinely collected electronic health record data. Screening, data extraction and quality appraisal using the Critical Appraisal Skills Program for Clinical Prediction Rule Studies were conducted. Study content was synthesised and reported narratively. Results: From 7,329 unique entries, four relevant studies were identified. All predictive models were built using different statistical techniques. Predictors across seven categories were used: demographics, assessments of care, fall history, medication use, health conditions, physical abilities, and environmental factors. Only one of the four studies had been validated externally. Three studies reported on the performance of the models. Conclusions: Adopting predictive modelling in aged care services for adverse events, such as falls, is in its infancy. The increased availability of electronic health record data and the potential of predictive modelling to document fall risk and inform appropriate interventions is making use of such models achievable. Having a dynamic prediction model that reflects the changing status of an aged care client is key to this moving forward for fall prevention interventions.
Original languageEnglish
Article number210
Number of pages13
JournalBMC Geriatrics
Volume22
Issue number1
DOIs
Publication statusPublished - 2022

Open Access - Access Right Statement

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Fingerprint

Dive into the research topics of 'The use of predictive fall models for older adults receiving aged care, using routinely collected electronic health record data : a systematic review'. Together they form a unique fingerprint.

Cite this