Abstract
The thermal shock resistance of solids is analysed for a plate subjected to a sudden temperature change under the framework of hyperbolic, non- Fourier heat conduction. The closed form solution for the temperature field and the associated thermal stress are obtained for the plate without cracking. The transient thermal stress intensity factors are obtained through a weight function method. The maximum thermal shock temperature that the plate can sustain without catastrophic failure is obtained according to the two distinct criteria: (i) maximum local tensile stress criterion and (ii) maximum stress intensity factor criterion. The difference between the non-Fourier solutions and the classical Fourier solution is discussed. The traditional Fourier heat conduction considerably overestimates the thermal shock resistance of the solid. This confirms the fact that introduction of the non-Fourier heat conduction model is essential in the evaluation of thermal shock resistance of solids.
Original language | English |
---|---|
Article number | 20120754 |
Number of pages | 16 |
Journal | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |
Volume | 469 |
Issue number | 2153 |
DOIs | |
Publication status | Published - 2013 |