Tillage history and crop residue input enhanced native carbon mineralisation and nutrient supply in contrasting soils under long-term farming systems

Jharna Rani Sarker, Bhupinder Pal Singh, Yunying Fang, Annette L. Cowie, Warwick J. Dougherty, Damian Collins, Ram C. Dalal, Brajesh K. Singh

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

Understanding the legacy effect of tillage-based farming systems on soil organic carbon (SOC) mineralisation and nutrient [nitrogen (N), phosphorus (P) and sulphur (S)] supply after crop residue input is critical to appropriately manage plant available nutrients at the farm scale. To enhance this understanding, crop residues [canola (Brassica napus: δ13C 124‰) or wheat (Triticum aestivum: δ13C 461‰)] were added to Luvisol and Vertisol from two long-term (16–46 years) field experiments and incubated under a controlled environment for 126 days. The practices in the Luvisol were conventional tillage (CT) and reduced tillage (RT) under mixed crop-pasture rotation, and no-till (NT) under continuous cereal-cover crop rotation. The practices in the Vertisol were CT and NT under wheat-wheat rotation. The residue input significantly stimulated SOC mineralisation via “positive priming”, which was greater (p <  0.05) in the CT than RT/NT in the Luvisol only. The SOC mineralised after 126 days was 3.1–4.2 and 1.6–2.5 times higher in the canola and wheat residue-amended soils, respectively, than the unamended soils. Although the CT or RT versus NT had higher net N availability in the Luvisol only, the residue input did not increase plant available N in both soils, possibly due to stronger residue-induced N immobilisation than mineralisation. The results showed a significant release of available P and S in both residue-amended soils (canola > wheat) after 26–50% of residue-C was mineralised over 126 days, and the Vertisol had greater net available P than Luvisol. Our results suggest that considerable quantities of available P and S may release from the soil reserves via SOC priming, and possibly viadissolution/desorption reactions in the soils, in addition to their direct release from the residues. In conclusion, crop residue input to historical farming systems enhanced the supply of available P and S, which varied with tillage, crop residue and soil type.
Original languageEnglish
Pages (from-to)71-84
Number of pages14
JournalSoil and Tillage Research
Volume193
DOIs
Publication statusPublished - 2019

Keywords

  • canola
  • humus
  • plant nutrients
  • residues
  • stable isotopes
  • wheat

Fingerprint

Dive into the research topics of 'Tillage history and crop residue input enhanced native carbon mineralisation and nutrient supply in contrasting soils under long-term farming systems'. Together they form a unique fingerprint.

Cite this