TY - JOUR
T1 - Tumour stroma ratio assessment using digital image analysis predicts survival in triple negative and luminal breast cancer
AU - Millar, Ewan K. A.
AU - Browne, Lois H.
AU - Beretov, Julia
AU - Lee, Kirsty
AU - Lynch, Jodi
AU - Swarbrick, Alexander
AU - Graham, Peter H.
PY - 2020
Y1 - 2020
N2 - We aimed to determine the clinical significance of tumour stroma ratio (TSR) in luminal and triple negative breast cancer (TNBC) using digital image analysis and machine learning algorithms. Automated image analysis using QuPath software was applied to a cohort of 647 breast cancer patients (403 luminal and 244 TNBC) using digital H&E images of tissue microarrays (TMAs). Kaplan–Meier and Cox proportional hazards were used to ascertain relationships with overall survival (OS) and breast cancer specific survival (BCSS). For TNBC, low TSR (high stroma) was associated with poor prognosis for both OS (HR 1.9, CI 1.1–3.3, p = 0.021) and BCSS (HR 2.6, HR 1.3–5.4, p = 0.007) in multivariate models, independent of age, size, grade, sTILs, lymph nodal status and chemotherapy. However, for luminal tumours, low TSR (high stroma) was associated with a favourable prognosis in MVA for OS (HR 0.6, CI 0.4–0.8, p = 0.001) but not for BCSS. TSR is a prognostic factor of most significance in TNBC, but also in luminal breast cancer, and can be reliably assessed using quantitative image analysis of TMAs. Further investigation into the contribution of tumour subtype stromal phenotype may further refine these findings.
AB - We aimed to determine the clinical significance of tumour stroma ratio (TSR) in luminal and triple negative breast cancer (TNBC) using digital image analysis and machine learning algorithms. Automated image analysis using QuPath software was applied to a cohort of 647 breast cancer patients (403 luminal and 244 TNBC) using digital H&E images of tissue microarrays (TMAs). Kaplan–Meier and Cox proportional hazards were used to ascertain relationships with overall survival (OS) and breast cancer specific survival (BCSS). For TNBC, low TSR (high stroma) was associated with poor prognosis for both OS (HR 1.9, CI 1.1–3.3, p = 0.021) and BCSS (HR 2.6, HR 1.3–5.4, p = 0.007) in multivariate models, independent of age, size, grade, sTILs, lymph nodal status and chemotherapy. However, for luminal tumours, low TSR (high stroma) was associated with a favourable prognosis in MVA for OS (HR 0.6, CI 0.4–0.8, p = 0.001) but not for BCSS. TSR is a prognostic factor of most significance in TNBC, but also in luminal breast cancer, and can be reliably assessed using quantitative image analysis of TMAs. Further investigation into the contribution of tumour subtype stromal phenotype may further refine these findings.
UR - https://hdl.handle.net/1959.7/uws:61689
U2 - 10.3390/cancers12123749
DO - 10.3390/cancers12123749
M3 - Article
SN - 2072-6694
VL - 12
JO - Cancers
JF - Cancers
IS - 12
M1 - 3749
ER -