Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery

Chenchen Wang, Luojia Liu, Shuo Zhao, Yanchen Liu, Yubo Yang, Haijun Yu, Suwon Lee, Gi-Hyeok Lee, Yong-Mook Kang, Rong Liu, Fujun Li, Jun Chen

Research output: Contribution to journalArticlepeer-review

390 Citations (Scopus)

Abstract

Layered transition-metal oxides have attracted intensive interest for cathode materials of sodium-ion batteries. However, they are hindered by the limited capacity and inferior phase transition due to the gliding of transition-metal layers upon Na+ extraction and insertion in the cathode materials. Here, we report that the large-sized K+ is riveted in the prismatic Na+ sites of P2-Na0.612K0.056MnO2 to enable more thermodynamically favorable Na+ vacancies. The Mn-O bonds are reinforced to reduce phase transition during charge and discharge. 0.901 Na+ per formula are reversibly extracted and inserted, in which only the two-phase transition of P2 ↔ P’2 occurs at low voltages. It exhibits the highest specific capacity of 240.5 mAh g−1 and energy density of 654 Wh kg−1 based on the redox of Mn3+/Mn4+, and a capacity retention of 98.2% after 100 cycles. This investigation will shed lights on the tuneable chemical environments of transition-metal oxides for advanced cathode materials and promote the development of sodium-ion batteries.

Original languageEnglish
Article number2256
Pages (from-to)1-10
Number of pages9
JournalNature Communications
Volume12
Issue number1
DOIs
Publication statusPublished - 1 Dec 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

Open Access - Access Right Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

Fingerprint

Dive into the research topics of 'Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery'. Together they form a unique fingerprint.

Cite this