Understanding cancer patient cohorts in virtual reality environment for better clinical decisions : a usability study

Zhonglin Qu, Quang Vinh Nguyen, Chng Wei Lau, A. Johnston, P.J. Kennedy, Simeon Simoff, D. Catchpoole

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Visualising patient genomic data in a cohort with embedding data analytics models can provide relevant and sensible patient comparisons to assist a clinician with treatment decisions. As immersive technology is actively used around the medical world, there is a rising demand for an efficient environment that can effectively display genomic data visualisations on immersive devices such as a Virtual Reality (VR) environment. The VR technology will allow clinicians, biologists, and computer scientists to explore a cohort of individual patients within the 3D environment. However, demonstrating the feasibility of the VR prototype needs domain users’ feedback for future user-centred design and a better cognitive model of human–computer interactions. There is limited research work for collecting and integrating domain knowledge into the prototype design. Objective: A usability study for the VR prototype–-Virtual Reality to Observe Oncology data Models (VROOM) was implemented. VROOM was designed based on a preliminary study among medical users. The goals of this usability study included establishing a baseline of user experience, validating user performance measures, and identifying potential design improvements that are to be addressed to improve efficiency, functionality, and end-user satisfaction. Methods: The study was conducted with a group of domain users (10 males, 10 females) with portable VR devices and camera equipment. These domain users included medical users such as clinicians and genetic scientists and computing domain users such as bioinformatics and data analysts. Users were asked to complete routine tasks based on a clinical scenario. Sessions were recorded and analysed to identify potential areas for improvement to the data visual analytics projects in the VR environment. The one-hour usability study included learning VR interaction gestures, running visual analytics tool, and collecting before and after feedback. The feedback was analysed with different methods to measure effectiveness. The statistical method Mann–Whitney U test was used to analyse various task performances among the different participant groups, and multiple data visualisations were created to find insights from questionnaire answers. Results: The usability study investigated the feasibility of using VR for genomic data analysis in domain users’ daily work. From the feedback, 65% of the participants, especially clinicians (75% of them), indicated that the VR prototype is potentially helpful for domain users’ daily work but needed more flexibility, such as allowing them to define their features for machine learning part, adding new patient data, and importing their datasets in a better way. We calculated the engaged time for each task and compared them among different user groups. Computing domain users spent 50% more time exploring the algorithms and datasets than medical domain users. Additionally, the medical domain users engaged in the data visual analytics parts (approximately 20%) longer than the computing domain users.
Original languageEnglish
Article number295
Number of pages15
JournalBMC Medical Informatics and Decision Making
Volume23
Issue number1
Publication statusPublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

Open Access - Access Right Statement

This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data

Keywords

  • Genomic Data Analysis
  • Visualisation
  • Clinical Decision-making
  • Virtual Reality
  • Usability Study

Fingerprint

Dive into the research topics of 'Understanding cancer patient cohorts in virtual reality environment for better clinical decisions : a usability study'. Together they form a unique fingerprint.

Cite this