Uptake and accumulation of nano/microplastics in plants : a critical review

Imran Azeem, Muhammad Adeel, Muhammad Arslan Ahmad, Noman Shakoor, Gama Dingba Jiangcuo, Kamran Azeem, Muhammad Ishfaq, Awais Shakoor, Muhammad Ayaz, Ming Xu, Yukui Rui

Research output: Contribution to journalArticlepeer-review

Abstract

The ubiquitous presence of microplastics (MPs) and nanoplastics (NPs) in the environment is an undeniable and serious concern due to their higher persistence and extensive use in agricultural production. This review highlights the sources and fate of MPs and NPs in soil and their uptake, translocation, and physiological effects in the plant system. We provide the current snapshot of the latest reported studies with the majority of literature spanning the last five years. We draw attention to the potential risk of MPs and NPs in modern agriculture and their effects on plant growth and development. We also highlight their uptake and transport pathways in roots and leaves via different exposure methods in plants. Conclusively, agricultural practices, climate changes (wet weather and heavy rainfall), and soil organisms play a major role in transporting MPs and NPs in soil. NPs are more prone to enter plant cell walls as compared to MPs. Furthermore, transpiration pull is the dominant factor in the plant uptake and translocation of plastic particles. MPs have negligible negative effects on plant physiological and biochemical indicators. Overall, there is a dire need to establish long-term studies for a better understanding of their fate and associated risks mechanisms in realistic environment scenarios for safe agricultural functions.
Original languageEnglish
Article number2935
Number of pages22
JournalNanomaterials
Volume11
Issue number11
DOIs
Publication statusPublished - 2021

Open Access - Access Right Statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Fingerprint

Dive into the research topics of 'Uptake and accumulation of nano/microplastics in plants : a critical review'. Together they form a unique fingerprint.

Cite this