Abstract
![CDATA[This paper has experimentally verified and compared features of sEMG (Surface Electromyogram) such as ICA (Independent Component Analysis) and Fractal Dimension (FD) for identification of low level forearm muscle activities. The fractal dimension was used as a feature as reported in the literature. The normalized feature values were used as training and testing vectors for an Artificial neural network (ANN), in order to reduce inter-experimental variations. The identification accuracy using FD of four channels sEMG was 58%, and increased to 96% when the signals are separated to their independent components using ICA.]]
Original language | English |
---|---|
Title of host publication | Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine (EMBC 2009): Minneapolis, Minnesota, USA, 3-6 September 2009 |
Publisher | IEEE |
Pages | 364-367 |
Number of pages | 4 |
ISBN (Print) | 9781424432967 |
DOIs | |
Publication status | Published - 2009 |
Event | IEEE Engineering in Medicine and Biology Society. Annual Conference - Duration: 30 Apr 2015 → … |
Conference
Conference | IEEE Engineering in Medicine and Biology Society. Annual Conference |
---|---|
Period | 30/04/15 → … |
Keywords
- electromyography
- fractals
- human information processing
- independent component analysis
- multivariant analysis
- muscles
- neural networks (computer science)