Abstract
A grid computing environment provides a type of distributed computation that is unique because it is not centrally managed and it has the capability to connect heterogeneous resources. A grid system provides location-independent access to the resources and services of geographically distributed machines. An essential ingredient for supporting location-independent computations is the ability to discover resources that have been requested by the users. Because the number of grid users can increase and the grid environment is continuously changing, a scheduler that can discover decentralized resources is needed. Grid resource scheduling is considered to be a complicated, NP-hard problem because of the distribution of resources, the changing conditions of resources, and the unreliability of infrastructure communication. Various artificial intelligence algorithms have been proposed for scheduling tasks in a computational grid. This paper uses the imperialist competition algorithm (ICA) to address the problem of independent task scheduling in a grid environment, with the aim of reducing the makespan. Experimental results compare ICA with other algorithms and illustrate that ICA finds a shorter makespan relative to the others. Moreover, it converges quickly, finding its optimum solution in less time than the other algorithms.
Original language | English |
---|---|
Pages (from-to) | 187-199 |
Number of pages | 13 |
Journal | Journal of Intelligent & Fuzzy Systems |
Volume | 27 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2014 |