Using information content to select keypoints for UAV image matching

Vahid Mousavi, Masood Varshosaz, Fabio Remondino

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Image matching is one of the most important tasks in Unmanned Arial Vehicles (UAV) photogrammetry applications. The number and distribution of extracted keypoints play an essential role in the reliability and accuracy of image matching and orientation results. Conventional detectors generally produce too many redundant keypoints. In this paper, we study the effect of applying various information content criteria to keypoint selection tasks. For this reason, the quality measures of entropy, spatial saliency and texture coefficient are used to select keypoints extracted using SIFT, SURF, MSER and BRISK operators. Experiments are conducted using several synthetic and real UAV image pairs. Results show that the keypoint selection methods perform differently based on the applied detector and scene type, but in most cases, the precision of the matching results is improved by an average of 15%. In general, it can be said that applying proper keypoint selection techniques can improve the accuracy and efficiency of UAV image matching and orientation results. In addition to the evaluation, a new hybrid keypoint selection is proposed that combines all of the information content criteria discussed in this paper. This new screening method was also compared with those of SIFT, which showed 22% to 40% improvement for the bundle adjustment of UAV images.
Original languageEnglish
Article number1302
Number of pages27
JournalRemote Sensing
Volume13
Issue number7
DOIs
Publication statusPublished - 2021

Open Access - Access Right Statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Fingerprint

Dive into the research topics of 'Using information content to select keypoints for UAV image matching'. Together they form a unique fingerprint.

Cite this