Using occlusion-based saliency maps to explain an artificial intelligence tool in lung cancer screening : agreement between radiologists, labels, and visual prompts

Z. Gandomkar, P. L. Khong, A. Punch, Sarah Lewis

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Occlusion-based saliency maps (OBSMs) are one of the approaches for interpreting decision-making process of an artificial intelligence (AI) system. This study explores the agreement among text responses from a cohort of radiologists to describe diagnostically relevant areas on low-dose CT (LDCT) images. It also explores if radiologists’ descriptions of cases misclassified by the AI provide a rationale for ruling out the AI’s output. The OBSM indicating the importance of different pixels on the final decision made by an AI were generated for 10 benign cases (3 misclassified by the AI tool as malignant) and 10 malignant cases (2 misclassified by the AI tool as benign). Thirty-six radiologists were asked to use radiological vocabulary, typical to reporting LDCT scans, to describe the mapped regions of interest (ROI). The radiologists’ annotations were then grouped by using a clustering-based technique. Topics were extracted from the annotations and for each ROI, a percentage of annotations containing each topic were found. Radiologists annotated 17 and 24 unique ROIs on benign and malignant cases, respectively. Agreement on the main label (e.g., “vessel,” “nodule”) by radiologists was only seen in only in 12% of all areas (5/41 ROI). Topic analyses identified six descriptors which are commonly associated with a lower malignancy likelihood. Eight common topics related to a higher malignancy likelihood were also determined. Occlusion-based saliency maps were used to explain an AI decision-making process to radiologists, who in turn have provided insight into the level of agreement between the AI’s decision and radiological lexicon.
Original languageEnglish
Pages (from-to)1164-1175
Number of pages12
JournalJournal of Digital Imaging
Volume35
Issue number5
DOIs
Publication statusPublished - 2022

Open Access - Access Right Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Fingerprint

Dive into the research topics of 'Using occlusion-based saliency maps to explain an artificial intelligence tool in lung cancer screening : agreement between radiologists, labels, and visual prompts'. Together they form a unique fingerprint.

Cite this