Variations in litterfall dynamics, C:N:P stoichiometry and associated nutrient return in pure and mixed stands of camphor tree and masson pine forests

Taimoor Hassan Farooq, Zhongwen Li, Wende Yan, Awais Shakoor, Uttam Kumar, Rubab Shabbir, Yuanying Peng, Ekambaram Gayathiri, Saqer S. Alotaibi, Jacek Wróbel, Hazem M. Kalaji, Xiaoyong Chen

Research output: Contribution to journalArticlepeer-review

Abstract

Litterfall, directly and indirectly, affects the soil physicochemical properties, microbial activity, and diversity of soil fauna and flora by adding organic matter and nutrients to the soil. This study explores litterfall dynamics such as litterfall production, litter decomposition rate, and associated nutrient return in three forest types, that is, camphor tree forest (CTF), Masson pine forest (MPF), and camphor tree and Masson pine mixed forest (CMF), in subtropical China. Results showed that CMF had the highest mean annual litterfall production (4.30 ± 0.22 t ha−1), which was significantly higher than that of MPF (3.41 ± 0.25 t ha−1) and CTF (3.26 ± 0.17 t ha−1). Leaf represented the major fraction of litterfall, constituting over 71% of the total litterfall mass in the three forest types. The contribution of branch litter was 16.3, 8.9, and 16.9%, and miscellaneous litter was 12.6, 18.9, and 11.1% in CTF, MPF, and CMF, respectively. The concentration of macronutrients ranked as N > Ca > K > Mg > P in all litter fractions. The total annual macronutrient return to the soil from the litterfall was in order as CTF (74.2 kg ha−1‧yr−1) > CMF (70.7 kg ha−1‧yr−1) > MPF (33.6 kg ha−1‧yr−1). The decomposition rate was higher in leaf litter than in branch litter throughout the three forests. Among the forest types, the leaf and branch decomposition rates were in a pattern: CTF > CMF > MPF. The ratio of C/N in both leaf and branch litters was significantly higher in MPF than in CTF and CMF, while no significant differences in N/P ratio were found in these litters among the three forests. The high N:P ratios in leaf litter (23/30) and the branch (24/32) litter indicated the high N returning and low nutrient returning to the soil. Our results suggested that the broadleaved forests have faster litter decomposition and higher macronutrient returns than conifer forests. Moreover, the litter decomposition rate was mainly associated with litterfall quality and chemical composition. The introduction of broadleaved trees into monoculture coniferous stands could increase litter production nutrients return, and thus, it had advantages in soil nutrients restoration and sustainable forest management.
Original languageEnglish
Article number903039
Number of pages10
JournalFrontiers in Environmental Science
Volume10
DOIs
Publication statusPublished - 2022

Open Access - Access Right Statement

© 2022 Farooq, Li, Yan, Shakoor, Kumar, Shabbir, Peng, Gayathiri, Alotaibi, Wróbel, kalaji and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Fingerprint

Dive into the research topics of 'Variations in litterfall dynamics, C:N:P stoichiometry and associated nutrient return in pure and mixed stands of camphor tree and masson pine forests'. Together they form a unique fingerprint.

Cite this