The present study was firstly aimed at producing the AM fungal inocula by using soil-based and soil-less culture techniques, including the in-vitro axenic technique, and secondly to assess the infectivity and effectiveness of the inocula so produced in glasshouse and field conditions. Indigenous AM fungi from 5 different sites of New South Wales were successfully propagated and multiplied using the pot-culture and atomizing disc aeroponic culture techniques, and their infectivity was measured using the MPN bioassay method. The coarse and fine sand mix was proven to be very effective for the production of AM fungal inocula. The findings indicated that aeroponic culture technique is far superior to that of conventional pot-culture technique, and could possibly substitute the most commonly used pot-culture technique of AM fungal inoculum production. The ultra-sonic nebulizer technology could possibly be an alternative to conventional aeroponic systems for producing AM fungal isolates in commercial quantities. The introduction of the sheared-root inoculum of Glomus intraradices, produced by the ultra-sonic nebulizer technique, into agricultural soils can substantially reduce the intake of P-fertilizers as much as 50% of the recommended level. The study also indicated that soil phosphorus is a critical factor in limiting mycorrhizal colonization, possibly limiting mycorrhizal responses.The research suggests that various commercially produced single or 'cocktail' inocula may work on mycorrhiza dependent plants in soils where the indigenous AM flora is either not abundant and/or efficient. Furthermore, ecophysiology of the same AM species have different effects on plant growth.
Date of Award | 1997 |
---|
Original language | English |
---|
- aeroponic
- inocula
- nebulizer
- glasshouse
- pot-culture
- phosphorus
- mycorrhizas
- fungi
- vesicular-arbuscular mycorrhizas
Comparative study of production, infectivity, and effectiveness of arbuscular mycorrhizal fungi produced by soil-based and soil-less techniques
Asif, M. (Author). 1997
Western Sydney University thesis: Doctoral thesis