Development of a real-time business intelligence (BI) framework based on hex-elementization of data points for accurate business decision-making

  • Girish Nair

Western Sydney University thesis: Doctoral thesis

Abstract

The desire to use business intelligence (BI) to enhance efficiency and effectiveness of business decisions is neither new nor revolutionary. The promise of BI is to provide the ability to capture interrelationship from data and information to guide action towards a business goal. Although BI has been around since the 1960s, businesses still cannot get competitive information in the form they want, when they want and how they want. Business decisions are already full of challenges. The challenges in business decision-making include the use of a vast amount of data, adopting new technologies, and making decisions on a real-time basis. To address these challenges, businesses spend valuable time and resources on data, technologies and business processes. Integration of data in decision-making is crucial for modern businesses. This research aims to propose and validate a framework for organic integration of data into business decision-making. This proposed framework enables efficient business decisions in real-time. The core of this research is to understand and modularise the pre-established set of data points into intelligent and granular "hex-elements" (stated simply, hex-element is a data point with six properties). These intelligent hex-elements build semi-automatic relationships using their six properties between the large volume and high-velocity data points in a dynamic, automated and integrated manner. The proposed business intelligence framework is called "Hex-Elementization" (or "Hex-E" for short). Evolution of technology presents ongoing challenges to BI. These challenges emanate from the challenging nature of the underlying new-age data characterised by large volume, high velocity and wide variety. Efficient and effective analysis of such data depends on the business context and the corresponding technical capabilities of the organisation. Technologies like Big Data, Internet of Things (IoT), Artificial Intelligence (AI) and Machine Learning (ML), play a key role in capitalising on the variety, volume and veracity of data. Extricating the "value" from data in its various forms, depth and scale require synchronizing technologies with analytics and business processes. Transforming data into useful and actionable intelligence is the discipline of data scientists. Data scientists and data analysts use sophisticated tools to crunch data into information which, in turn, are converted into intelligence. The transformation of data into information and its final consumption as actionable business intelligence is an end-to-end journey. This end-to-end transformation of data to intelligence is complex, time-consuming and resource-intensive. This research explores approaches to ease the challenges the of end-to-end transformation of data into intelligence. This research presents Hex-E as a simplified and semi-automated framework to integrate, unify, correlate and coalesce data (from diverse sources and disparate formats) into intelligence. Furthermore, this framework aims to unify data from diverse sources and disparate formats to help businesses make accurate and timely decisions.
Date of Award2019
Original languageEnglish

Keywords

  • business intelligence
  • business
  • decision making
  • data processing
  • big data

Cite this

'