Development of Bridge Information Model (BrIM) for digital twinning and management using TLS technology

  • Masoud Mohammadi

Western Sydney University thesis: Doctoral thesis

Abstract

In the current modern era of information and technology, the concept of Building Information Model (BIM), has made revolutionary changes in different aspects of engineering design, construction, and management of infrastructure assets, especially bridges. In the field of bridge engineering, Bridge Information Model (BrIM), as a specific form of BIM, includes digital twining of the physical asset associated with geometrical inspections and non-geometrical data, which has eliminated the use of traditional paper-based documentation and hand-written reports, enabling professionals and managers to operate more efficiently and effectively. However, concerns remain about the quality of the acquired inspection data and utilizing BrIM information for remedial decisions in a reliable Bridge Management System (BMS) which are still reliant on the knowledge and experience of the involved inspectors, or asset manager, and are susceptible to a certain degree of subjectivity. Therefore, this research study aims not only to introduce the valuable benefits of Terrestrial Laser Scanning (TLS) as a precise, rapid, and qualitative inspection method, but also to serve a novel sliced-based approach for bridge geometric Computer-Aided Design (CAD) model extraction using TLS-based point cloud, and to contribute to BrIM development. Moreover, this study presents a comprehensive methodology for incorporating generated BrIM in a redeveloped element-based condition assessment model while integrating a Decision Support System (DSS) to propose an innovative BMS. This methodology was further implemented in a designed software plugin and validated by a real case study on the Werrington Bridge, a cable-stayed bridge in New South Wales, Australia. The finding of this research confirms the reliability of the TLS-derived 3D model in terms of quality of acquired data and accuracy of the proposed novel slice-based method, as well as BrIM implementation, and integration of the proposed BMS into the developed BrIM. Furthermore, the results of this study showed that the proposed integrated model addresses the subjective nature of decision-making by conducting a risk assessment and utilising structured decision-making tools for priority ranking of remedial actions. The findings demonstrated acceptable agreement in utilizing the proposed BMS for priority ranking of structural elements that require more attention, as well as efficient optimisation of remedial actions to preserve bridge health and safety.
Date of Award2023
Original languageEnglish

Keywords

  • building information modeling
  • bridges
  • maintenance and repair
  • inspection
  • three-dimensional imaging in geology
  • laser recording
  • optical scanners

Cite this

'