This research evaluates the use of a molecular level visualisation approach in Thai secondary schools. The goal is to obtain insights about the usefulness of this approach, and to examine possible improvements in how the approach might be applied in the future. The methodology used for this research used both qualitative and quantitative approaches. Data were collected in the form of pre- and post-intervention multiple choice questions, open-ended-questions, drawing exercises, one-to-one interviews and video recordings of class activity. The research was conducted in two phases, involving a total of 261 students from the 11th Grade in Thailand. The use of VisChem animations in three studies was evaluated in Phase I. Study 1 was a pilot study exploring the benefits of incorporating VisChem animations to portray the molecular level. Study 2 compared test results between students exposed to these animations of molecular level events, and those not. Finally, in Study 3, test results were gathered from different types of schools (a rural school, a city school, and a university school). The results showed that students (and teachers) had misconceptions at the molecular level, and VisChem animations could help students understand chemistry concepts at the molecular level across all three types of schools. While the animation treatment group had a better score on the topic of states of water, the non-animation treatment group had a better score on the topic of dissolving sodium chloride in water than the animation group. The molecular level visualisation approach as a learning design was evaluated in Phase II. This approach involved a combination of VisChem animations, pictures, and diagrams together with the seven-step VisChem learning design. The study involved three classes of students, each with a different treatment, described as Class A - Traditional approach; Class B - VisChem animations with traditional approach; and Class C - Molecular level visualisation approach. Pre-test and post-test scores were compared across the three classes. The results from the multiple choice and calculation tests showed that the Class C - molecular level visualisation approach group demonstrated a deeper understanding of chemistry concepts than students in Classes A and B. However, the results showed that all the students were unable to perform satisfactorily on the calculation tests because the students had insufficient prior knowledge about stoichiometry to connect with the new knowledge. In the drawing tests the students exposed to the molecular level visualisation approach had a better mental model than the other classes, albeit with some remaining misconceptions. The findings highlight the intersecting nature of the teacher, student, and modelling in chemistry teaching. Use of a multi-step molecular level visualisation approach that encourages observation, reflection of prior understanding, and multiple opportunities at viewing (and using various visualisation elements), are key elements leading to a deeper understanding of chemistry. Presentation of the multi-step molecular level visualisation approach must be coupled with careful consideration of student prior knowledge, and with adequate guidance from a teacher who understands the topics at a deep level.
Date of Award | 2015 |
---|
Original language | English |
---|
- chemistry
- study and teaching (secondary)
- molecules
- models
- computer simulation
- computer-assisted instruction
- Thailand
Evaluation of the molecular level visualisation approach for teaching and learning chemistry in Thailand
Phenglengdi, B. (Author). 2015
Western Sydney University thesis: Doctoral thesis