This research aims to coordinate energy sources for standalone microgrid (MG), incorporating locational marginal pricing (LMP) and energy storage. Two approaches are suggested for the optimal energy management of MG. First, the energy management of a standalone MG is performed utilising the concept of LMP. The objective is to minimise the average LMP to reduce network congestion and power loss costs. Second, energy management is performed using a dual-stage energy management approach. A BESS model is formulated considering charging and discharging characteristics and utilised in this research for dual-stage energy management. The impact of the battery state of charge (SOC) is assessed in the optimal day-ahead operation. An incremental cost factor is included with battery SOC when calculating the system operating cost. A new binary jellyfish search algorithm (BJSA) is developed to solve energy management problems. The suggested BJSA technique is implemented in solving the optimal energy management of MG considering LMP. The simulations of the suggested approach are conducted on the IEEE 14 and 30-bus test systems. Results show that the BJSA technique is more consistent than the binary particle swarm optimisation (BPSO) technique in determining the optimal solution. In addition, the BJSA technique is employed to solve the dual-stage energy management of MG considering BESS. The proposed approach is simulated on the IEEE 14 and 30-bus systems. Results also show that the BJSA technique is superior to the BPSO technique in minimising the operating cost in real-time economic dispatch (ED). The performance of the BJSA and BPSO techniques is exactly similar to the UC schedule with and without BESS considering the IEEE 30-bus system, like the IEEE 14-bus system. The BJSA technique minimises operating costs by up to 5% over the BPSO technique for the UC schedule with power loss. Operating costs are reduced by up to 5% using the BJSA technique rather than the BPSO technique for real-time ED with BESS. However, the BPSO technique is inconsistent and fails to obtain the same results for the IEEE 30-bus system. Overall, the findings confirm the superiority of the suggested BJSA technique and the suggested optimisation approaches in optimising the energy management of MG.
Date of Award | 2023 |
---|
Original language | English |
---|
- microgrids (smart power grids)
- renewable energy sources
- energy storage
- storage batteries
- management
- prices
Optimal coordination of energy sources for microgrid incorporating concepts of locational marginal pricing and energy storage
Islam, M. M. (Author). 2023
Western Sydney University thesis: Doctoral thesis