This thesis is concerned with the derivation of similarity solutions for one-dimensional coupled systems of reaction - diffusion equations, a semi-linear system and a one-dimensional tripled system. The first area of research in this thesis involves a coupled system of diffusion equations for the existence of two distinct families of diffusion paths. Constructing one-parameter transformation groups preserving the invariance of this system of equations enables similarity solutions for this coupled system to be derived via the classical and non-classical procedures. This system of equation is the uncoupled in the hope of recovering further similarity solutions for the system. Once again, one-parameter groups leaving the uncoupled system invariant are obtained, enabling similarity solutions for the system to be elicited. A one-dimensional pattern formation in a model of burning forms the next component of this thesis. The primary focus of this area is the determination of similarity solutions for this reaction - diffusion system by means of one-parameter transformation group methods. Consequently, similarity solutions which are a generalisation of the solutions of the one-dimensional steady equations derived by Forbes are deduced. Attention in this thesis is then directed toward a semi-linear coupled system representing a predator - prey relationship. Two approaches to solving this system are made using the classical procedure, leading to one-parameter transformation groups which are instrumental in elicting the general similarity solution for this system. A triple system of equations representing a one-dimensional case of diffusion in the presence of three diffusion paths constitutes the next theme of this thesis. In association with the classical and non-classical procedures, the derivation of one-parameter transformation groups leaving this system invariant enables similarity solutions for this system to be deduced. The final strand of this thesis involves a one- dimensional case of the general linear system of coupled diffusion equations with cross-effects for which one-parameter transformation group methods are once more employed. The one-parameter groups constructed for this system prove instrumental in enabling the attainment of similarity solutions for this system to be accomplished
Date of Award | 1996 |
---|
Original language | English |
---|
- diffusion equations
- semi-linear
- one-dimensional tripled system
- coupled system
- Forbes
- classica
- non-classical
Systems of partial differential equations and group methods
Chow, T. L. M. (Author). 1996
Western Sydney University thesis: Master's thesis