Duchenne muscular dystrophy (DMD) is the second most common fatal genetic disease in humans, with an incidence of 1 in 3300 live male births. DMD is characterized by progressive cycles of skeletal muscle necrosis/regeneration triggered by the absence of the protein dystrophin from the inner surface of the sarcolemma. In DMD and dystrophin-negative mdx mice, regenerated skeletal muscle fibres are branched and deterioration of muscle contractile function with age is correlated with an increase in both the number and complexity of branched fibres. In this thesis, I present four papers in support of my hypothesis, that when the number and complexity of branched fibres in dystrophin-negative muscles reaches a critical threshold, termed 'tipping point', the branches in and of themselves, mechanically weaken the muscle and are susceptible to rupturing when subjected to high forces such as those experienced during eccentric/lengthening contractions. Methodologically, the papers utilise a combination of isolated muscle function contractile measurements coupled with single fibre imaging and confocal microscopy of cleared whole muscles. All experiments use intact muscles isolated from the dystrophic mdx mouse, double knockout (dk)Actn3KO/mdx (dKO) mouse and littermate controls. In conclusion, I propose a two-phase model to explain the aetiology of DMD. Phase-one involves the absence of dystrophin triggering a pathological increase in [Ca2+]in resulting in skeletal muscle fibre necrosis followed immediately by regeneration. The process proceeds cyclically, increasing the number of abnormally branched regenerated dystrophin-deficient muscle fibres. Once the number and complexity of branched fibres passes a level I term 'tipping point', phase-two occurs; now eccentric contractions cause force deficits as a consequence of branches rupturing. In the final stage, phase-two will tend to have a positive feedback component, as breaking branches will no longer support the eccentrically contracting muscle, placing additional stress on the remaining branches during the contraction. It is important to note that depending on the complexity of branching and forces experienced by the muscle, phase-one and phase-two are not mutually exclusive and will occur simultaneously.
Date of Award | 2022 |
---|
Original language | English |
---|
- Duchenne muscular dystrophy
The role of branched muscle fibres and ACTN3 polymorphism as a genetic disease modifier in Duchenne nuscular dystrophy
Kiriaev, L. (Author). 2022
Western Sydney University thesis: Doctoral thesis